Google Scholar:
http://scholar.google.com/citations?user=3XUVmn8AAAAJ&hl=en
Patents
- Xuejun Pan, Meijun Zeng, and Ning Li. Synthesis of oligosaccharides as prebiotics from simple sugars in concentrated sulfuric acids. US Utility Application (#17832490) filed on June 3, 2022.
- Xuejun Pan and Ning Li. Methods of producing oligosaccharides for use as prebiotics. US 10,711,022B2. Date of patent: Jul. 14, 2020.
- Li Shuai and Xuejun Pan. Method for producing liquid hydrocarbon fuels directly from lignocellulosic biomass. US 9,487,712B2. Date of patent: Nov. 8, 2016.
- Xuejun Pan and Li Shuai. Saccharification of Lignocellulosic Biomass. US 9,187,790B2, Date of patent: Nov. 17, 2015.
- S. Wang, X.J. Pan, J.Y. Zhu and R. Gleisner. Sulfite pretreatment for biorefining biomass. US 9,090,915B2, Date of patent: July 28, 2015.
Peer-reviewed articles
2024
- Ning Li, Kexin Yan, Thanya Rukkijakan, Jiefeng Liang, Yuting Liu, Zhipeng Wang, Heran Nie, Suthawan Muangmeesri, Gonzalo Castiella-Ona, Xuejun Pan, Qunfang Zhou, Guibin Jiang, Guangyuan Zhou, John Ralph, Joseph Samec, Feng Wang. Selective lignin arylation for biomass fractionation and benign bisphenols. Nature, 2024, 630, 381–386. https://doi.org/10.1038/s41586-024-07446-5
- Li Xu, Meifang Cao, Jiefeng Zhou, Yuxia Pang, Zhixian Li, Dongjie Yang, Shao-Yuan Leu, Hongming Lou, Xuejun Pan, Xueqing Qiu. Aqueous amine enables sustainable monosaccharide, monophenol and pyridine base coproduction in lignocellulosic biorefineries. Nature Communications, 2024, 15, 734. https://doi.org/10.1038/s41467-024-45073-w
- Yu Liu, Gen Li, Yimin Mao, Yue Gao, Minhua Zhao, Alexandra Brozena, Derrick Wang, Samuel von Keitz, Taotao Meng, Hoon Kim, Xuejun Pan, Yiping Qi, Liangbing Hu. Genome-edited trees for high-performance engineered wood. Matter, 2024, in press. https://doi.org/10.1016/j.matt.2024.07.003
- Meijun Zeng, Xuejun Pan*. Purification and fractionation of cellooligosaccharides synthesized from controlled cellulose hydrolysis by sulfuric acid using nanofiltration. Separation and Purification Technology, 2024, 348, 127800. https://doi.org/10.1016/j.seppur.2024.127800
- Zhiqiang Pang, Ning Li, Cuihua Dong, Hairui Ji, Yang Liao, Guihua Yang, Xuejun Pan. Insights into the dissolution of cellulose in lithium bromide solution. Carbohydrate Polymer Technologies and Applications, 2024, 7, 100522. https://doi.org/10.1016/j.carpta.2024.100522
- Meijun Zeng, Jee-Hwan Oh, Jan-Peter van Pijkeren, Xuejun Pan. Selective utilization of gluco-oligosaccharides by lactobacilli: a mechanism study revealing the impact of glycosidic linkages and degree of polymerization on their utilization. Journal of Food Science, 2024, 89, 523–539. https://doi.org/10.1111/1750-3841.16851
- Guodong Wu, Haishun Du, Kiandokht Pakravan, Wonhyeong Kim, Yoo Lim Cha, Majid Beidaghi, Xinyu Zhang, Sun Hee Kim, Xuejun Pan, and Dong-Joo Kim. Wearable room-temperature ethanol sensor based on Ti3C2Tx/polypyrrole functionalized face mask for drunk driving monitoring. Carbon, 2024, 216, 118565. https://doi.org/10.1016/j.carbon.2023.118565
2023
- Taotao Meng, Yu Ding, Yu Liu, Lin Xu, Yimin Mao, Julia Gelfond, Shuke Li, Zhihan Li, Paul F. Salipante, Hoon Kim, J.Y. Zhu, Xuejun Pan, Liangbing Hu. In situ lignin adhesion for high-performance bamboo composites. Nano Letters, 2023, 23, 8411–8418. https://doi.org/10.1021/acs.nanolett.3c01497
- Qi Dong, Aditya Lele, Xinpeng Zhao, Sichao Cheng, Yueqing Wang, Miao Guo, Mingjin Cui, Alexandra Brozena, Tangyuan Li, Shuke Li, Ioannis Kevrekidis, Jianguo Mei, Xuejun Pan, Dongxia Liu, Yiguang Ju, Ying Lin, Lin Xu, Aileen Qi, Liangbing Hu. Catalyst-free and Far-from-equilibrium Depolymerization of Plastics via Electrified Spatiotemporal Heating. Nature, 2023, 616, 488–494. https://doi.org/10.1038/s41586-023-05845-8
- Yu Ding, Zhenqian Pang, Kai Lan, Yuan Yao, Guido Panzarasa, Lin Xu, Marco Lo Ricco, Douglas R. Rammer, Y. Zhu, Ming Hu, Xuejun Pan, Teng Li, Ingo Burgert, Liangbing Hu. Emerging engineered wood for building applications. Chemical Reviews, 2023,123 (5), 1843–1888. https://doi.org/10.1021/acs.chemrev.2c00450.
- Meijun Zeng, Sonali Mohapatra, Jee-Hwan Oh, Theresa Astmann, Jan-Peter van Pijkeren, Xuejun Pan. Novel galacto-oligosaccharides from lactose: chemical synthesis, structural characterization, and in vitro assessment of prebiotic activity. ACS Sustainable Chemistry & Engineering, 2023, 11, 14031–14045. https://doi.org/10.1021/acssuschemeng.3c03170
- Guodong Wu, Haishun Du, Kiandokht Pakravan, Wonhyeong Kim, Yoo Lim Cha, Majid Beidaghi, Xinyu Zhang, Sun Hee Kim, Xuejun Pan, and Dong-Joo Kim. Polyaniline/Ti3C2Tx functionalized mask sensors for monitoring of CO2 and human respiration rate. Chemical Engineering Journal, 2023, 475, 146228. https://doi.org/10.1016/j.cej.2023.146228
- Cheng Cai, Chaofeng Zhang, Ning Li, Huifang Liu, Hongming Lou, Xuejun Pan; J.Y. Zhu, Feng Wang. Changing the role of lignin in enzymatic hydrolysis for a sustainable and efficient sugar platform. 2023, Renewable and Sustainable Energy Reviews, 2023, 183, 113445. https://doi.org/10.1016/j.rser.2023.113445
- Yueqing Wang, Mingjie Chen, Yang Yang, John Ralph, Xuejun Pan. Efficient O-demethylation of lignin-derived aromatic compounds under moderate conditions. RSC Advances, 2023, 13, 5925–5932. https://doi.org/10.1039/D3RA00245D
- Meijun Zeng, Ning Li, Theresa Astmann, Jee-Hwan Oh, Jan-Peter van Pijkeren, and Xuejun Pan. Chemical synthesis of gluco-oligosaccharides with mixed glycosidic linkages as potential prebiotics via dehydration condensation of glucose in concentrated sulfuric acid. Food Research International, 2023, 165, 112436. https://doi.org/10.1016/j.foodres.2022.112436
- Meijun Zeng, Jan-Peter van Pijkeren, and Xuejun Pan. Prebiotic gluco-oligosaccharides: synthesis, purification, structural characterization, and structure-function studies. Comprehensive Reviews in Food Science and Food Safety, 2023, 22, 2611–2651. https://doi.org/10.1111/1541-4337.13156
- Lihe Zhu, Xueting Shao, Xuejun Pan, Zhong Sun, Xiangyu Li, Xixin Duan, Junyou Shi. One-pot aqueous-phase conversion of biomass into furfural catalyzed by supported heteropolyacids with the addition of LiBr. Biomass and Bioenergy, 2023, 171, 106734. https://doi.org/10.1016/j.biombioe.2023.106734
2022
- Xuliang Lin, Ping Wang, Ruitong Hong, Xi Zhu, Yingchun Liu, Xuejun Pan*,Xueqing Qiu, Yanlin Qin.Fully Lignocellulosic Biomass-based Double-layered Porous Hydrogel for Efficient Solar Steam Generation. Advanced Functional Materials, 2022, 32 (51), 2209262. https://doi.org/10.1002/adfm.202209262
-
JY Zhu and Xuejun Pan. Efficient sugar production from plant biomass: current status, challenges, and future directions. Renewable and Sustainable Energy Reviews, 2022, 164, 112583. https://doi.org/10.1016/j.rser.2022.112583
-
Meijun Zeng and Xuejun Pan. Insights into solid acid catalysts for efficient cellulose hydrolysis to glucose: progress, challenges, and future opportunities. Catalysis Reviews-Science and Engineering, 2022, 64 (3), 445–490. https://doi.org/10.1080/01614940.2020.1819936
-
Zhihan Li, Chaoji Chen, Hua Xie, Yuan Yao, Xin Zhang, Alexandra Brozena, Jianguo Li, Yu Ding, Xinpeng Zhao, Min Hong, Haiyu Qiao, Lee M. Smith, Xuejun Pan, Robert Briber, Sheldon Q. Shi, Liangbing Hu. Sustainable high-strength macrofibers extracted from natural bamboo. Nature Sustainability, 2022, 5, 235–244. https://doi.org/10.1038/s41893-021-00831-2
2021
-
Xiaohui Yang, Zheng Li, Long Li, Ning Li, Fei Jing, Lihong Hu, Qianqian Shang, Xiao Zhang, Yonghong Zhou, and Xuejun Pan. Depolymerization and Demethylation of Kraft Lignin in Molten Salt Hydrate and Applications as Antioxidant and Metal Ion Scavenger. Journal of Agricultural and Food Chemistry, 2021, 69, 13568–13577. https://doi.org/10.1021/acs.jafc.1c05759 (Cover featured article)
-
Qinqin Xia, Chaoji Chen, Yonggang Yao, Jianguo Li, Shuaiming He, Yubing Zhou, Teng Li, Xuejun Pan, Yuan Yao, Liangbing Hu. A strong, biodegradable and recyclable lignocellulosic bioplastic. Nature Sustainability, 2021, 4, 627–635. https://doi.org/10.1038/s41893-021-00702-w
-
Shu-Ching Yang, Yang Liao, KG Karthikeyan, and Xuejun Pan. Mesoporous cellulose-chitosan composite hydrogel fabricated via co-dissolution-regeneration process as biosorbent of heavy metals. Environmental Pollution, 2021, 286, 117324. https://doi.org/10.1016/j.envpol.2021.117324
-
Yang Liao and Xuejun Pan. Self-indicating and high-capacity mesoporous biosorbent fabricated from cellulose and chitosan via co-dissolution and regeneration for removing formaldehyde from indoor air, Environmental Sciences: Nano, 2021, 8, 1283–1295. https://doi.org/10.1039/D1EN00122A
-
Ning Li, Huiyang Bian, J.Y. Zhu, Peter N. Ciesielski, Xuejun Pan. Tailorable cellulose II nanocrystals (CNC II) prepared in mildly acidic lithium bromide trihydrate (MALBTH). Green Chemistry, 2021, 23, 2778–2791. https://doi.org/10.1039/D1GC00145K
-
Qiang Yang and Xuejun Pan. Introducing hydroxyl groups as cellulose-binding sites into polymeric solid acids to improve their catalytic performance in hydrolyzing cellulose, Carbohydrate Polymers, 2021, 261, 117895. https://doi.org/10.1016/j.carbpol.2021.117895
-
Lan Sun, Zhenye Mo, Qiong Li, Dafeng Zheng, Xueqing Qiu, and Xuejun Pan. Facile Synthesis and performance of pH/Temperature Dual-Response Hydrogel Containing Lignin-based Carbon Dots. International Journal of Biological Macromolecules, 2021, 175, 516–525. https://doi.org/10.1016/j.ijbiomac.2021.02.049
2020
- Zheng Li, Eka Sutandar, Thomas Goihl, Xiao Zhang, and Xuejun Pan. Cleavage of ethers and demethylation of lignin in acidic concentrated lithium bromide (ACLB) solution. Green Chemistry, 2020, 22, 7989–8001. https://doi.org/10.1039/D0GC02581J
- Miaofang Zhou, Haiqiang Shi, Chao Li, Xueru Sheng, Yanning Sun, Minjie Hou, Meihong Niu, and Xuejun Pan. Depolymerization and activation of alkali lignin by solid acid-catalyzed phenolation for preparation of lignin-based phenolic foams. Industrial & Engineering Chemistry Research, 2020, 59, 14296–14305. https://doi.org/10.1021/acs.iecr.0c01753
- Tao Wu, Ning Li, Xuejun Pan, and Sheng-Li Chen. Homogenous hydrolysis of cellulose to glucose in an inorganic ionic liquid catalyzed by zeolites. Cellulose, 2020, 27, 9201–9215. https://doi.org/10.1007/s10570-020-03411-3
- L. Zhang, Y. Liao, Y.-C. Wang, S. Zhang, W.Q. Yang, X.J. Pan, and Z.L. Wang. Cellulose II aerogels based triboelectric nanogenerator. Advanced Functional Materials, 2020, 30 (28), 2001763. https://doi.org/10.1002/adfm.202001763.
- H.T. Liu, T. Chen, C.H. Dong, and X.J. Pan. Biomedical applications of hemicellulose-based hydrogels. Current Medicinal Chemistry, 2020, 27 (28), 4647–4659. https://doi.org/10.2174/0929867327666200408115817
- T. Wu, S.-L. Chen, G.M. Yuan, X.J. Pan, J.N. Du, Y.T. Zhang, and N.N. Zhang. High metal-acid balance and selective hydrogenation activity catalyst for hydrocracking of 1-methnaphthalene to benzene, toluene, and xylene. Industrial & Engineering Chemistry Research, 2020, 59 (13), 5546–5556. https://doi.org/10.1021/acs.iecr.9b06158
- H.M. Wang, Z. Liu, X. Zheng, X.J. Pan, L.F. Hui, J.Z. Li, H. Zhang. Assessment on Temperature-Pressure Severally Controlled Explosion Pretreatment of Poplar. Carbohydrate Polymers, 2020, 230, 115622. https://doi.org/10.1016/j.carbpol.2019.115622
2019
- Y. Liao, Z.Q. Pang, and X.J. Pan. Fabrication and mechanistic study of aerogels directly from whole biomass. ACS Sustainable Chemistry & Engineering, 2019, 7, 17723–17736. https://doi.org/10.1021/acssuschemeng.9b04032
- J.H. Grabber, C. Davidson, Y. Tobimatsu, H. Kim, F.C. Lu, Y.M. Zhu, M. Opietnik, N. Santoro, C.E. Foster,F.X. Yue, D. Ress, X.J. Pan, and J. Ralph. Structural Features of Alternative Lignin Monomers Associated with Improved Digestibility of Artificially Lignified Maize Cell Walls. Plant Science, 2019, 287, 110070. DOI: https://doi.org/10.1016/j.plantsci.2019.02.004.
- N. Li, Z.N. Wang, T.J. Qu, J. Kraft, J.-H. Oh, J.P. van Pijkeren, G.W. Huber, and X.J. Pan. High-yield synthesis of glucooligosaccharides (GlOS) from glucose via non-enzymatic glycosylation as potential prebiotics. Green Chemistry, 2019, 21, 2686–2698. https://doi.org/10.1039/C9GC00663J
- Z.J. Wang, S. Qiu, K. Hirth, J.L Cheng, J.L. Wen, N. Li, Y.M. Fang, X.J. Pan, and JY Zhu. Preserving Both Lignin and Cellulose Chemical Structures: Flow-Through Acid Hydrotropic Fractionation at Atmospheric Pressure for Complete Wood Valorization. ACS Sustainable Chemistry & Engineering, 2019, 7, 10808–10820. https://doi.org/10.1021/acssuschemeng.9b01634
- P.Y. Li, Q.L. Zhang, X. Zhang, X.M. Zhang, X.J. Pan, and F. Xu. Subcellular dissoltution of xylan and lignin for enhancing enzymatic hydrolysis of microwave assisted deep eutectic solvent pretreated pinus bungeaa Zucc. Bioresource Technology, 2019, 288, 121475. https://doi.org/10.1016/j.biortech.2019.121475
- L.H. Gan and X.J. Pan. Phenol-enhanced depolymerization and activation of kraft lignin in alkaline medium. Industrial & Engineering Chemistry Research, 2019, 58, 7794–7800. https://doi.org/10.1021/acs.iecr.9b01147
- Y.L. Wang, X.J. Pan, Y.Y. Ye, S.R. Li, D. Wang, and Y.Q. Liu. Optimization of biomass liquefaction in isopropanol/water with Raney nickel and sodium hydroxide as combined catalysts. Biomass and Bioenergy, 2019, 122, 305–312. https://doi.org/10.1016/j.biombioe.2019.01.020
- D.F. Zheng, Y.Z. Ma, X.Q. Qiu, and X.J. Pan. Adsorption performance of magnetic aminated lignin for the removal of Cu(II) and Cd(II). TAPPI Journal, 2019, 18(1), 9–18.
- Z.N. Wang, N. Li, and X.J. Pan. Transformation of Ammonia Fiber Expansion (AFEX) Corn Stover Lignin into Microbial Lipids by Rhodococcus opacus. Fuel, 2019, 240, 119–125. https://doi.org/10.1016/j.fuel.2018.11.081
2018
▪ N. Li, Y.D. Li, C.G. Yoo, X.H. Yang, X.L. Lin, J. Ralph, X.J. Pan, 2018. An uncondensed lignin depolymerized in the solid state and isolated from lignocellulosic biomass: a mechanistic study. Green Chemistry, 20, 4224–4235. https://doi.org/10.1039/C8GC00953H
▪ X.Q. Zhang, N. Xiao, H. Wang, C.F. Liu, X.J. Pan, 2018. Preparation and Characterization of Regenerated Cellulose Film from a Solution in Lithium Bromide Molten Salt Hydrate. Polymers, 10, 614. https://doi.org/10.3390/polym10060614
▪ Z.Q. Li and X.J. Pan, 2018. Strategies to modify physicochemical properties of hemicelluloses from biorefinery and paper industry for packaging material. Reviews in Environmental Science and Bio/Technology, 17, 47–69. https://doi.org/10.1007/s11157-018-9460-7
▪ G.J. Lyu, C.G. Yoo, and X.J. Pan, 2018. Alkaline oxidative cracking for effective depolymerization of biorefining lignin to mono-aromatic compounds and organic acids with molecular oxygen. Biomass and Bioenergy, 108, 7–14. https://doi.org/10.1016/j.biombioe.2017.10.046
2017
▪ P. Noparat, P. Prasertsan, O. Sompong, and X.J. Pan, 2017. Sulfite Pretreatment to Overcome Recalcitrance of Lignocellulose for Enzymatic Hydrolysis of Oil Palm trunk. Energy Procedia, 138, 1122–1127. https://doi.org/10.1016/j.egypro.2017.10.209
▪ L.H. Chen, J.Z. Dou, Q. Ma, N. Li, R. Wu, H. Bian, D.J. Yelle, T. Vuorinen, S. Fu, and X.J. Pan, Rapid and near-complete dissolution of wood lignin at≤ 80° C by a recyclable acid hydrotrope. Science Advances 2017, 3, e1701735. https://advances.sciencemag.org/content/advances/3/9/e1701735.full.pdf
▪ C.G. Yoo, N. Li, M. Swannell, and X.J. Pan, Isomerization of glucose to fructose catalyzed by lithium bromide in water. Green Chemistry 2017, 19, 4402–4411. https://doi.org/10.1039/C7GC02145C
▪ H. Zhang, N. Li, X.J. Pan, S. Wu, and J. Xie, Direct Transformation of Cellulose to Gluconic Acid in a Concentrated Iron (III) Chloride Solution under Mild Conditions. ACS Sustainable Chemistry & Engineering 2017, 5, 4066–4072. https://doi.org/10.1021/acssuschemeng.7b00060
▪ C.G. Yoo , S.T. Zhang, and X.J. Pan. Effective conversion of biomass into bromomethylfurfural, furfural, and depolymerized lignin in lithium bromide molten salt hydrate of a biphasic system. RSC Advances. 2017, 7, 300–308. https://doi.org/10.1039/C6RA25025D
2016
▪ X.H. Yang, N. Li, X.L. Lin, X.J. Pan, and Y.H. Zhou. Selective cleavage of the aryl ether bonds in lignin for depolymerization by acidic lithium bromide molten salt hydrate under mild conditions. Journal of Agricultural Food and Chemistry, 2016, 44, 8379–8387. https://doi.org/10.1021/acs.jafc.6b03807
▪ Q. Yang and X.J. Pan. Bifunctional porous polymers bearing boronic and sulfonic acids for hydrolysis of cellulose. ACS Sustainable Chemistry and Engineering, 2016, 4, 4824–4830. https://doi.org/10.1021/acssuschemeng.6b01102
▪ N. Li, X.J. Pan, and J. Alexander. A facile and fast method for quantitating lignin in lignocellulosic biomass using acidic lithium bromide trihydrate (ALBTH). Green Chemistry, 2016, 18, 5367–5376. https://doi.org/10.1039/C6GC01090C
▪ C.G.Yoo and X.J. Pan. Pretreatment of lignocellulosic feedstocks. In: “Bioenergy: Principles and Applications”, Edited by Y.B. Li and S.K. Khanal, John Wiley & Sons, Inc., 2016, pp. 201–223. (ISBN: 9781118568316)
▪ Q. Yang and X.J. Pan. Synthesis and application of bifunctional porous polymers bearing chloride and sulfonic acid as cellulase-mimetic solid acids for cellulose hydrolysis. BioEnergy Research, 2016, 9, 578–586. https://doi.org/10.1007/s12155-015-9702-2
▪ Q. Yang and X.J. Pan. Correlation between lignin physicochemical properties and inhibition to enzymatic hydrolysis of cellulose. Biotechnology and Bioengineering, 2016, 113, 1213–1224. https://doi.org/10.1002/bit.25903
▪ H.D. Zhang, N. Li, X.J. Pan, S.B. Wu, and J. Xie. Oxidative conversion of glucose to gluconic acid by iron (III) chloride in water under mild conditions. Green Chemistry, 2016, 18, 2308–2312. https://doi.org/10.1039/C5GC02614H
▪ C.G. Yoo, H. Kim, F.C. Lu, A. Azarpira, X.J. Pan, K.K. Oh, J.S. Kim, J. Ralph, and T.H. Kim. Understanding the physicochemical characteristics and the improved enzymatic saccharification of corn stover pretreated with aqueous and gaseous ammonia. BioEnergy Research, 2016, 9 (1), 67–76. https://doi.org/10.1007/s12155-015-9662-6
▪ S. Harde, Z.N. Wang, M. Horne, J.Y. Zhu, and X.J. Pan. Microbial lipid production from SPORL-pretreated Douglas fir by Mortierella isabellina. Fuel, 2016, 175, 64–74. https://doi.org/10.1016/j.fuel.2016.02.023
▪ Z.Q. Pang, C.H. Dong, and X.J. Pan. Enhanced deconstruction and dissolution of lignocellulosic biomass in ionic liquid at higher water content by lithium chloride. Cellulose, 2016, 23, 323–338. https://doi.org/10.1007/s10570-015-0832-7
▪ C.G. Yoo and X.J. Pan. Pretreatment of lignocellulosic feedstocks. In: “Bioenergy: Principles and Applications”, Edited by Y.B. Li and S.K. Khanal, John Wiley & Sons, Inc., 2016, pp. 201–223. (ISBN: 9781118568316)
▪ Q. Yang and X.J. Pan. Fabrication and applications of biocompatible graphene oxide and graphene. In: “Handbook of Graphene Science”, Edited by Mahmood Aliofkhazraei, Nasar Ali, William I. Milne, Cengiz S. Ozkan, Stanislaw Mitura, Juana L. Gervasoni. CRC Press/Taylor & Francis, 2016, pp. 125–132. (ISBN: 9781466591271)
▪ C. Zhang, R. Gleisner, C.J. Houtman, X.J. Pan, and J.Y. Zhu. Sulfite pretreatment to overcome the recalcitrance of lignocelluloses for bioconversion of woody biomass. In: “Biomass Fractionation Technologies for a Lignocellulosic Feedstock Based Biorefinery”, Edited by S. I. Mussatto, Elsevier, 2016, pp. 495–537. (ISBN: 9780128023235)
2015
▪ P. Noparat, P. Prasertsan, S. O-Thong, and X.J. Pan. Dilute acid pretreatment of oil palm trunk biomass at high temperature for enzymatic hydrolysis. Energy Procedia, 2015, 79, 924–929. https://doi.org/10.1016/j.egypro.2015.11.588
▪ J. Grabber, N. Santoro, C.E. Foster, S. Elumalai, J. Ralph, and X.J. Pan. Incorporation of flavonoid derivatives or pentagalloyl glucose into lignin enhances cell wall saccharification following mild alkaline or acidic pretreatments. BioEnergy Research, 2015, 8, 1391–1400. https://doi.org/10.1007/s12155-015-9605-2
▪ J.J. Zeng, C.G. Yoo, F. Wang, X.J. Pan, W. Vermerris, and Z.H. Tong. Biomimetic Fenton-catalyzed lignin depolymerization to high value aromatics and dicarboxylic acids. ChemSusChem, 2015, 8, 861–871. https://doi.org/10.1002/cssc.201403128
▪ C.G. Yoo and X.J. Pan. Fuel ethanol from lignocellulosic biomass. In: “Handbook of Clean Energy Systems”, Edited by J.Y. Yan, Wiley, Vol 1: Renewable Energy, p119–138, Wiley, 2015. (ISBN: 9781118388587).
2014
▪ Z.Q. Li, Z.H. Jiang, B.H. Fei, Z.Y. Cai, X.J. Pan. Comparison of bamboo green, timber and yellow in sulfite (SPORL), sulfuric acid and sodium hydroxide pretreatments for enzymatic saccharification. Bioresource Technology, 2014, 151, 91–99. https://doi.org/10.1016/j.biortech.2013.10.060
▪ B. Lundberg, X.J. Pan, A. White, H. Chau, and A. Hotchkiss. Rheology and composition of processed citrus fiber Journal of Food Engineering. Journal of Food Engineering, 2014, 125, 97–104. https://doi.org/10.1016/j.jfoodeng.2013.10.021
▪ Cheng, J.L., S.-L. Leu, R. Gleisner, J. Pan, and J.Y. Zhu. High solids quasi-simultaneous enzymatic saccharification and fermentation of undetoxified whole slurry of SPORL pretreated Douglas fir forest residue. Cellulose Chemistry and Technology, 2014, 48, 849–854.
2013
▪ X.J. Pan, and J.N. Saddler. Effect of replacing polyol by organosolv and kraft lignin on the property and structure of rigid polyurethane foam. Biotechnology for biofuels, 2013, 6, 12. https://doi.org/10.1186/1754-6834-6-12
▪ Zhang, D.S., Q. Yang, J.Y. Zhu, and X.J. Pan. Sulfite (SPORL) Pretreatment of Switchgrass for Enzymatic Saccharification. Bioresource Technology, 2013, 129, 127–134. https://doi.org/10.1016/j.biortech.2012.11.031
▪ Li, Z.Q., Z.H. Jiang, B.H. Fei, X.J. Pan, Z.Y. Cai, X. Liu, and Y. Yu. Ethanosolv with NaOH pretreatment of moso bamboo for efficient enzymatic saccharification. BioResources, 2013, 8 (3), 4711–4721.
2012
▪ Elumalai, S., Y. Tobimatsu, J.H. Grabber, X.J. Pan, and J. Ralph. Epigallocatechin Gallate Incorporation into Lignin Enhances the Alkaline Delignification and Enzymatic Saccharification of Cell Walls. Biotechnology for Biofuels, 2012, 5, 59. https://doi.org/10.1186/1754-6834-5-59
▪ Yang, Q. and X.J. Pan. Pretreatment of Agave americana stalk for enzymatic saccharification. Bioresource Technology, 2012, 126, 336–340. https://doi.org/10.1016/j.biortech.2012.10.018
▪ Li, Z.Q., Q. Yang, Z.H. Jiang, B.H. Fei, Z.Y. Cai, and X.J. Pan. Comparative study of sulfite (SPORL), dilute acid and NaOH pretreatments of bamboo for enzymatic saccharification. Journal of Biobased Materials and Bioenergy, 2012, 6, 544–551. https://doi.org/10.1166/jbmb.2012.1250
▪ Shuai, L. and X.J. Pan. Hydrolysis of cellulose by cellulase-mimetic solid catalyst. Energy & Environmental Science, 2012, 5, 6889–6894. https://doi.org/10.1039/C2EE03373A
▪ Tobimatsu, Y., S. Elumalai, J.H. Grabber, C.L. Davidson, X.J. Pan and J. Ralph. Hydroxycinnamate conjugates as potential monolignol replacements: in vitro lignification and cell wall studies with rosmarinic acid. ChemSusChem, 2012, 5, 676–686. https://doi.org/10.1002/cssc.201290013
▪ Yang, Q., X.J. Pan, K. Clarke and K.C. Li. Covalent functionalization of graphene with polysaccharides. Industrial & Engineering Chemistry Research, 2012, 51, 310–317. https://doi.org/10.1021/ie201391e
▪ Li, Z., Z. Jiang, B. Fei, X.J. Pan, Z. Cai, X. Liu, and Y. Yu. Ethanol organosolv pretreatment of bamboo for efficient enzymatic saccharification. BioResources, 2012, 7, 3452–3462.
▪ X.J. Pan. Organosolv biorefining platform for producing fuels, chemicals and materials from lignocellulose. In: “The role of green chemistry in biomass processing and conversion”, edited by Haibo Xie and Nick Gathergood, John Wiley & Sons, Inc., Hoboken, New Jersey. 2012, pp. 241–262. (ISBN: 9781118449417)
2011
▪ Yang, Q., X.J. Pan, F. Huang and K.C. Li. Functionalization of cellulose fiber with hyperbranched poly(3-methyl-3-oxetanemethanol) and poly(ε-caprolactone). Cellulose, 2011, 18, 1611–1621. https://doi.org/10.1007/s10570-011-9587-y
▪ Zhu, J.Y., H. Liu, S. Verrill, V. Herian, X.J. Pan and D.L. Rockwood. On polydispersity of feedstock recalcitrance and its effects on pretreatment optimization for sugar production. BioEnergy Research, 2011, 4, 201–210. https://doi.org/10.1007/s12155-011-9113-y
▪ Tian, S., W. Zhu, R. Gleisner, X.J. Pan and J.Y. Zhu. Comparisons of SPORL and dilute acid pretreatments for sugar and ethanol productions from aspen. Biotechnology Progress, 2011, 27, 419–427. https://doi.org/10.1002/btpr.545
▪ Elumalai and X.J. Pan. Chemistry and reactions of forest biomass during biorefining. ACS Symposium Series Book “Sustainable Production of Fuels, Chemicals, and Fibers from Forest Biomass”, edited by J.Y. Zhu, X. Zhang, and X.J. Pan. American Chemical Society, Washington, DC, 2011, pp. 109–144. (ISBN: 9780841226432)
2010
▪ Kim, D.E. and X.J. Pan. Preliminary study on converting hybrid poplar to chemicals and high-quality lignin using organosolv process. Industrial & Engineering Chemistry Research, 2010, 49, 12156–12163. https://doi.org/10.1021/ie101671r
▪ Li, X.M. and X.J. Pan. Hydrogels based on hemicellulose and lignin from cellulose biorefinery: a mini-review. Journal of Biobaesd Materials and Bioenergy, 2010, 4, 289–297. https://doi.org/10.1166/jbmb.2010.1107
▪ Luo, X., R. Gleisner, S. Tian, J. Negron, W. Zhu, E. Horn, X.J. Pan and J.Y. Zhu. Evaluation of mountain beetle-infested lodgepole pine for cellulosic ethanol production by SPORL pretreatment. Industrial & Engineering Chemistry Research, 2010, 49, 8258–8266. https://doi.org/10.1021/ie1003202
▪ Zhu, J.Y., X.J. Pan and R.S. Zalesny Jr. Pretreatment of Woody Biomass for Biofuel Production: Energy Efficiency, Technologies and Recalcitrance. Applied Microbiology and Biotechnology, 2010, 87, 847–857. https://doi.org/10.1007/s00253-010-2654-8
▪ Yang, Q. and X.J. Pan. A facile approach for fabricating fluorescent cellulose. Journal of Applied Polymer Science, 2010, 117, 3639–3644. https://doi.org/10.1002/app.32287
▪ Zhu, J.Y., W. Zhu, P. OBryan, B.S. Dien, S. Tian, R. Gleisner and X.J. Pan. Ethanol Production from SPORL-Pretreated Lodgepole Pine: Preliminary Evaluation of Mass Balance and Process Energy Efficiency. Applied Microbiology and Biotechnology, 2010, 86, 1355–1365. https://doi.org/10.1007/s00253-009-2408-7
▪ Zhu, J.Y. and X.J. Pan. Woody biomass pretreatment for cellulosic ethanol production: technology and energy consumption evaluation. Bioresource Technology, 2010, 101, 4992–5002. https://doi.org/10.1016/j.biortech.2009.11.007
▪ Yang, Q., X.J. Pan, F. Huang, and K.C. Li. Fabrication of high-concentration and stable aqueous suspensions of graphene nanosheets by noncovalent functionalization with natural polymers. Journal of Physical Chemistry-Part C, 2010, 114, 3811–3816. https://doi.org/10.1021/jp910232x
▪ Yang, Q. and X.J. Pan. Preparation and characterization of water-soluble single wall carbon nanotubes by hybridization with hydroxypropyl cellulose derivatives. Industrial & Engineering Chemistry Research, 2010, 49, 2747–2751. https://doi.org/10.1021/ie9014149
▪ Shuai, L., Q. Yang, J.Y. Zhu, F.C. Lu, P.J. Weimer, J. Ralph and X.J. Pan. Comparative study of SPORL and dilute acid pretreatments of spruce for cellulosic ethanol production. Bioresource Technology, 2010, 101, 3106–3114. https://doi.org/10.1016/j.biortech.2009.12.044
▪ Zhu, W.Y., J.Y. Zhu, R. Gleisner and X.J. Pan. On energy consumption for size-reduction and enzymatic saccharification of softwood lodgepole pine. Bioresource Technology, 2010, 101, 2782–2792. https://doi.org/10.1016/j.biortech.2009.10.076
2009
▪ Tu, M., X.J. Pan and J. Saddler. Adsorption of cellulase on cellulolytic enzyme lignin from lodgepole pine. Journal of Agricultural and Food Chemistry, 2009, 57, 7771–7778. https://doi.org/10.1021/jf901031m
▪ Harmita, H., K.G. Karthikeyan and X.J. Pan. Copper and cadmium ions sorption onto kraft and organosolv lignins. Bioresource Technology, 2009, 100, 6183–6191. https://doi.org/10.1016/j.biortech.2009.06.093
▪ Wang, G., X.J. Pan, J.Y. Zhu, R. Gleisner and D. Rockwood. Sulfite pretreatment to overcome recalcitrance of lignocellulose (SPORL) for robust enzymatic saccharification of hardwoods. Biotechnology Progress, 2009, 25, 1086–1093. https://doi.org/10.1002/btpr.206
▪ Zhu, J.Y., X.J. Pan, G.S. Wang and R. Gleisner. Sulfite pretreatment (SPORL) for robust enzymatic saccharification of spruce and red pine. Bioresource Technology, 2009, 100, 2411–2418. https://doi.org/10.1016/j.biortech.2008.10.057
▪ Zhu, J.Y., G.S. Wang, X.J. Pan and R. Gleisner. Specific surface to evaluate the efficiencies of milling and pretreatment of wood for enzymatic saccharification. Chemical Engineering Science, 2009, 64, 474–485. https://doi.org/10.1016/j.ces.2008.09.026
2008
▪ Q. Yang, L. Shuai and X.J. Pan. Synthesis of fluorescent chitosan and its application in noncovalent functionalization of carbon nanotubes. Biomacromolecules, 2008, 9, 3422–3426. https://doi.org/10.1021/bm800964m
▪ Yang, Q., L. Shuai, J.J. Zhou, F.C. Lu and X.J. Pan. Functionalization of multiwalled carbon nanotubes by pyrene-labeled hydroxypropyl cellulose. Journal of Physical Chemistry, Part B, 2008, 112, 12934–12939. https://doi.org/10.1021/jp805424f
▪ Pan, X.J., D. Xie, R. Yu and J. N. Saddler. The bioconversion of mountain pine beetle killed lodgepole pine to fuel ethanol using the organosolv process. Biotechnology and Bioengineering, 2008, 101, 39–48. (One of the top 25 most cited papers published in 2008, 2009 and 2010) https://doi.org/10.1002/bit.21883
▪ Pan, X.J. Role of functional groups in lignin inhibition of enzymatic hydrolysis of cellulose to glucose. Journal of Biobased Materials and Bioenergy, 2008, 2, 25–32. https://doi.org/10.1166/jbmb.2008.005
2007
▪ Chandra, R.P., R. Bura, W. Mabee, A. Berlin, X.J. Pan and J.N. Saddler. Substrate Pretreatment: The Key to Effective Enzymatic Hydrolysis of Lignocellulosics? Advances in Biochemical Engineering/Biotechnology, 2007, 108, 67–93. https://doi.org/10.1007/10_2007_064
▪ Pan, X.J., D. Xie, R. Yu, D. Lam and J. N. Saddler. Pretreatment of lodgepole pine killed by mountain pine beetle using organosolv ethanol process: fractionation and process optimization. Industrial & Engineering Chemistry Research, 2007, 46, 2609–2617. https://doi.org/10.1021/ie061576l
▪ Pan, X.J., D. Xie, K.-Y. Kang, S.-L. Yoon and J. N. Saddler. Effect of organosolv ethanol pretreatment variables on physical characteristics of hybrid poplar substrates. Applied Biochemistry and Biotechnology, 2007, 136–140, 367–378. https://doi.org/10.1007/978-1-60327-181-3_32
2006
▪ Pan, X.J., K. Ehara, J. Kadla, N. Gilkes and J. Saddler. Organosolv ethanol lignin from poplar as radical scavenger: relationship between lignin structure, extracting condition and antioxidant activity. Journal of Agricultural and Food Chemistry, 2006, 54, 5806–5813. https://doi.org/10.1021/jf0605392
▪ Pan, X.J., N. Gilkes and J. Saddler. Effect of acetyl groups on enzymatic hydrolysis of cellulosic substrates. Holzforschung, 2006, 60, 398–401. https://doi.org/10.1515/HF.2006.062
▪ Pan, X.J., N. Gilkes, J. Kadla, K. Pye, S. Saka, K. Ehara, D. Gregg, D. Xie, D. Lam and J. Saddler. Bioconversion of hybrid poplar to ethanol and co-products using an organosolv fractionation Process: Optimization of process yields. Biotechnology and Bioengineering, 2006, 94, 851–861. (One of the top 25 most cited papers published in 2006, 2007 and 2008) https://doi.org/10.1002/bit.20905
▪ Yu, F., Y.H. Liu, X.J. Pan, X.Y. Lin, C.M. Liu, P. Chen and R. Ruan. Liquefaction of corn stover and preparation of polyester from the liquefied polyol. Applied Biochemistry and Biotechnology, 2006, 129–132, 574–585. https://doi.org/10.1007/978-1-59745-268-7_46
▪ Mabee, W.E., D.J. Gregg, C. Arato, A. Berlin, R. Bura, N. Gilkes, O. Mirochnik, X.J. Pan, E.K. Pye and J.N. Saddler. Updates on softwood-to-ethanol process development. Applied Biochemistry and Biotechnology, 2006, 129–132, 55–70. https://doi.org/10.1007/978-1-59745-268-7_5
2005
▪ Pan, X.J., C. Arato, N. Gilkes, D. J. Gregg, W. Mabee, E. K. Pye, Z. Xiao, X. Zhang and J. N. Saddler. Biorefining of softwoods using ethanol organosolv pulping – preliminary evaluation of process streams for manufacture of fuel-grade ethanol and co-products. Biotechnology and Bioengineering, 2005, 90 (4), 473–481. https://doi.org/10.1002/bit.20453
▪ Pan, X.J., D. Xie, N. Gilkes, D.J. Gregg and J.N. Saddler. Strategies to enhance the enzymatic hydrolysis of pretreated softwood with high residual lignin content. Applied Biochemistry and Biotechnology, 2005, 121–124, 1069–1079. https://doi.org/10.1007/978-1-59259-991-2_90
▪ Pan. X.J. and Y. Sano. Fractionation of wheat straw by atmospheric acetic acid process. Bioresource Technology, 2005, 96 (11), 1256–1263. https://doi.org/10.1016/j.biortech.2004.10.018
2004
▪ Pan, X.J., X. Zhang, D.J. Gregg and J.N. Saddler. Enhanced enzymatic hydrolysis of steam-exploded Douglas fir by alkaline oxygen post-treatment. Applied Biochemistry and Biotechnology, 2004, 115, 1103–1114. https://doi.org/10.1007/978-1-59259-837-3_89
▪ Li, Y., R. Ruan, P.L. Chen, Z. Liu, X.J. Pan, X. Lin, Y. Liu, C.K. Mok, T. Yang. Enzymatic hydrolysis of corn stover pretreated by combined dilute alkaline treatment and homogenization. Transactions of ASAE. 2004, 47 (3), 821–825.
2002
▪ Zhu, J.Y., X.-S. Chai, X.J. Pan, Q. Luo and J. Li. Quantification and reduction of organic sulfur compound formation in a commercial wood pulping process. Environ. Sci. Technol., 2002, 36, 2269–2272. https://doi.org/10.1021/es011295z
▪ Pan, X.J. and Y.L. Deng. Fundamental aspects of recycling waxed corrugate containers (WCC) by flotation. Progress in Paper Recycling, 2001, 10(4), 28–36.
Before 2000
▪ Pan, X.J. and Y. Sano. Characterization and comparison of milled wood, acetic acid and alkaline lignins from wheat straw. Holzforschung, 2000, 54 (1), 61–65. https://doi.org/10.1515/HF.2000.009
▪ Pan, X.J. and Y. Sano. Atmospheric acetic acid pulping of rice straw IV: Physico-chemical characterization of acetic acid lignins from rice straw and woods, Part 2. Chemical structures. Holzforschung, 1999, 53 (6), 590–596. https://doi.org/10.1515/HF.1999.098
▪ Pan, X.J. and Y. Sano. Atmospheric acetic acid pulping of rice straw IV: Physico-chemical characterization of acetic acid lignins from rice straw and woods, Part 1. Physical characteristics. Holzforschung, 1999, 53 (5), 511–518. https://doi.org/10.1515/HF.1999.084
▪ Pan, X.J. and Y. Sano. Acetic acid pulping of wheat straw under atmospheric pressure. Journal of Wood Science, 1999, 45 (4), 319–325. https://doi.org/10.1007/BF00833497
▪ Pan, X.J., Y. Sano and T. Ito. Atmospheric acetic acid pulping of rice straw II: Behavior of ash and silica in rice straw during atmospheric acetic acid pulping and bleaching. Holzforschung, 1999, 53 (1), 49–55. https://doi.org/10.1515/HF.1999.009